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Absence of Long-Range Order with Long-Range Potentials 

M a r c  Baus  1,2 

Received May 22, 1979 

A particular form of Mermin's inequality is analyzed for repulsive inverse 
power potentials IV(r) = e2r-m/rn] in a d-dimensional space. For long- 
range potentials (m ~< d) the system is put into a stabilizing background. 
Long-range order is shown to be excluded for d ~< (m + 2)/2 when m ~< d, 
while for short-range potentials (m > d) we recover Mermin's result 
(d ~< 2). For Coulomb systems (m = d -  2) and the experimentally 
studied electron surface layer (d = 2, m = 1), long-range order cannot be 
excluded by the present argument. 
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1. UNTRODUCTION 

In  1936 it was pointed out  by Peierls (1) that  the mean-square deviation o f  
an a t o m  f rom its equilibrium posit ion diverges in one and two dimensions 
for  an infinite harmonic  crystal. Somewhat  later Landau  ~2) gave a general 
but  macroscopic argument  according to which fluctuations will destroy 
crystalline order  possessing only a one- or  two-dimensional  periodicity. 
These conclusions were criticized, for  instance, by  Frenkel. ~3~ By including 
higher order  terms with respect to the fluctuations Landau  (~) later revised 
his result for  the case o f  two-dimensional  periodicity. Nowadays  one often 
finds in the literature general statements according to which long-range order 
resulting f rom the breaking of  a cont inuous symmetry  will be destroyed by 
the fluctuations in one and two dimensions. Al though  this will often be the 
case, questions regarding the validity and the practical relevance o f  this 
statement generally cannot  be overlooked. The first microscopic t reatment  o f  
this p rob lem for  classical systems (to which the present considerations are 

1 Chirnie-Physique II, Universit6 Libre de Bruxelles, Bruxelles, Belgium. 
2 Chercheur Qualifi6 du Fonds National Beige de la Recherche Scientifique. 

111 
0022.471518010100-0111503.0010 �9 1980 Plenum Publishing Corporation 



112 Marc Baus 

restricted) is due to Mermin. (~) As is well known, the divergences found by 
Mermin in one and two dimensions are so weak that their practical relevance 
can be questioned. With respect to the general validity of the above state- 
ment, it should also be observed that Mermin's proof is explicitly restricted 
to short-range potentials. It is our purpose here to show that Mermin's 
conclusions are indeed sensitive to the range of the potential and hence that 
they are not completely general. To this end we will consider one-component 
systems of charged particles embedded into a stabilizing background. The 
particles are supposed to interact through a repulsive inverse-power pair 
potential. This includes the genuine Coulomb systems (m as well as the elec- 
tron surface layer to which much interest has been devoted recently. (6,7) 
With respect to the latter system it has been conjectured (a) that, although a 
proof was lacking, the general Peierls-Landau-Mermin argument should 
still be applicable. Below we will show that this is not the case. The major 
point is that Bogoliubov's 1/k 2 singularity is weakened for long-range 
potentials and transformed in the latter system into a 1/k singularity. Con- 
sequently long-range crystalline order in an infinite electron sheet cannot 
be excluded by the Peierls-Landau-Mermin argument. 

2. T H E  INEQUALIT IES 

We start from the well-known Schwarz inequality 

<IAI=><IBI=> I<A*B>[ = (1) 

where A* denotes the complex conjugate of A, [A[ 2 =  AA*, while (..-) 
stands for the canonical equilibrium average with respect to the Hamiltonian 
H at the inverse temperature /3 = (knT)-1. As was shown by Mermin, (9~ 
the classical version of Bogoliubov's inequality, namely 

<IAI=><[C, [C*,/3H]]> I<[C, A*]>I = (2) 

can be obtained from (1) by taking B equal to the Poisson bracket of C with 
H, B = [C, H], and neglecting surface terms in momentum and position 
space. Although the present problem can be studied (lm on the basis of 
Eq. (2), a slightly different inequality was proposed by Mermin. (5) His result 
can be recovered from (1) and (2) by preaveraging the Poisson bracket 
[C, H] over the momentum variables before substituting the result into (1). 
Hence, taking A = ~j ff(rj) and C = ~s pj~0(rj), with r s and pj the position 
and momentum of particle j,  while the functions ~(r) and ~0(r) are such as 
to lead to vanishing surface terms, and defining B = ([C, H])K, where 
('")~r stands for the momentum average with respect to the kinetic energy 
K of  H = K + U, one obtains from the vector analog of (1), after neglecting 
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spatial surface terms, the inequality originally proposed by Mermin(5~: 

(3) 

which differs from Bogoliubov's inequality because 

I([C,/-/]>KI ~ ~ ( l ie ,  t-/]l~>,~ 

Here and below all particle summations (~j) run from j = 1 to j = N. 
Next, we enclose the system of N particles into a d-dimensional cube of 

volume f2 = L a with periodic boundary conditions. The particles are as- 
sumed to interact through a pair potential V(lrl), which can be represented 
by the following Fourier series: 

V(Irl) = ~-1  ~ v(k) exp(ik.r) (4) 
k 

with k = (2rr/L)n, the d components of n being integers. The potential energy 
U can then be written as 

1 ~ ~(k) ~ exp[ik-(r, - ry)] U =  Uo + ~-fi ~,J 
i S 1  

(5) 

where U0 is a constant. For the long-range, repulsive, Coulomb-like poten- 
tials we have in mind the system will not explode only when it is put into an 
oppositely "charged," smeared-out background, as is customary for one- 
component plasmas. We will assume this to be the case. The background 
then removes the k = 0 term from the summation in Eq. (4), or equivalently 
we have introduced in Eq. (5) the modified potential g(k): 

~(k) = f 0, k = 0 (6) 
v(k), k ~ 0 

whereas Uo now becomes the Madelung energy of a cubic lattice with L as 
the spacing311) For short-range potentials (i.e., integrable at large distances) 
no background is required and we can use Eq. (5) with g(k) = v(k) and 
Uo = 0. To obtain the final inequality we take in Eq. (3) 

~b(r) = exp(ik'.r) - 3w and ~0(r) = exp(ik.r) 

differing from Mermin's choice <5) mainly by the presence of the Kronecker 
delta 3k (3k = 1 if k = O, ~k = 0 if k r 0). For long-range potentials (i.e., 
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not integrable at infinity), for which v(k) is singular for small k, this difference 
is not immaterial. We now obtain from Eq. (3) for k # 0 (i.e., ([B] 2) r 0) 
the basic inequality: 

Ik'121ek_k,I 2 
S(k') /> k2 + v(k) + I(k) >~ 0 (7) 

where pk is the order parameteKS): 

pk = N- 1 (  j~ e x p ( i k . r j ) )  (8) 

S(k) is the static structure factor: 

S(k)=N-Z~ ~[exp(ik.r,)- 3u]l 2 )  (9) 

while v(k) and I(k) are defined by 

v(k) = tiNY2 -~ ~ q2~(q)(3k_ q -- 3q) (10) 
q 

I(k) = fit) -~ ~ q2~(q)[h(k - q) - h(q)] (11) 
q 

with S(k) = I + h(k). From Eq. (5) and (9) we also have that 

((U- Uo)/N) = ( 1 / 2 ~ ) ~  ~(k)[h(k) + NS~] (12) 
k 

which clearly shows that ~(k = 0) has to be finite (short-range potentials) 
or to be removed by the background (long-range potentials) in order to 
obtain a finite result for the average energy per particle. 

3. S O M E  A P P L I C A T I O N S  

Two types of applications of the basic inequality (7) will be considered 
here. First we take k' = k, in which case (7) reduces to 

S(k) >~ k2/[k 2 + v(k) + /(k)] >/ 0 (13) 

which will be used below to obtain some information on the static structure 
factor S(k). Next we take k' = k 4- b with b a nonzero reciprocal lattice 
vector, multiply both sides of (7) with a positive function f([k[), and sum 
over all k values: 

]k + b]2f(]kl) 
~-1  ~k S(k + b)f([k[) >/ [pb]2~) -1 k 2 4- v(k) 4- I(k) >t 0 (14) 
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I f  in the thermodynamic limit (TL: N, f2 ~ 0% NO-1  _+ n) we have 

TL f2 -1 ~ S(k + b)f(Ikl) < oo (15) 
k 

whereas 

Ik + bl2f(lk[) (16) 
TL ~2-1 k 2 + v(k) + l (k)  = ~ 

then (14) implies TL pb = 0, which is the standard argument ~5) for the 
absence of crystalline order in the infinite system. In order to establish the 
sensitivity of  Eq. (16) to the range of the potential, it will be sufficient to 
consider repulsive inverse power potentials of  the form V(r) = e2r-m/m, 
e being the " cha rge"  of  the particles. This includes the Coulomb potential 
(m = d -  2) and the electron surface layer (d = 2, m = 1) as the most 
interesting cases. What  will be needed here is v(k) for large f~ or in the TL, 
the Fourier transform of V(r). For many m values of  interest, e.g., Coulomb 
systems, only the generalized Fourier transform of V(r) exists (see Ref. 12 
for a very readable account). Explicitly one has for 0 < m < d and by 
analytic continuation ~12) also for the other values of  m and d: 

= fe~Z(d, m)k m-a, m - d ~: 2p (17a) 

v(k) L.e2X(d, m)km-a[l + Y(d, m) In k], m - d = 2p (17b) 

wi thp  = 0, 1, 2 ..... Here it will be sufficient to quote ~12) the value o fZ(d ,  m): 

- a - ~ - i  a , 2 - [ d -  m\  / _ [ m  + 2\ 
Z(d, m) = 2 ~r ' 1 ' ~ )  / 1 ~ )  (18) 

where r is Euler's gamma function. From Eqs. (17a) and (18) the well- 
known results v(k) = 4~re2/k 2 and v(k) = 2~re2/k are easily recovered for 
m = 1 and respectively d = 3 and d = 2. Here we can however consider m 
and d to be continuous real variables. 

4. UPPER B O U N D S  

Before analyzing what becomes of  Bogoliubov's t /k  2 singularity, let 
us make sure that no other divergences will arise in the TL. For  the short- 
range case (m > d) Mermin has already shown ~5) that the various quantities 
appearing in (14) will remain bounded in the TL. In the long-range case we 
can make the following statements. Consider first (15). Adapting an argument 
of  Sorokina, ~1~ we can write 

1 
f2 -1 ~ S(k + b)f(Ikl) = _~ ~.  ([exp(ib.r~j)]F(Ir~l)) 

k t,3 

+ F(r = 0 ) -  N f ( k =  - b )  (19) 
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where F([r[) is the Fourier transform off( lk[) :  

F(r) = f2 -1 ~ ' f ( k )  exp(ik.r) (20a) 
k 

f (k)  = fn dr F(r) e x p ( -  ik. r) (20b) 

Sincef(lkl) is positive we can rewrite Eq. (19) as 

f~-i ~ S(k + b)f([k[) ~< ~ (F([rl,I)) + F(0) (21) 
k J ~ l  

Now if the system is in a crystalline state, then the distance between two 
neighboring particles Iraqi is bounded from below, Irl~l > ~a, by a fraction 
c~, however small (c~ # 0), of the lattice spacing a. Hence Ir,jl > c~a[i - j[, 
where j is a vector with integer components labeling the equilibrium posi- 
tion of  particle j. I f  for F(lrl) we select a monotonically decreasing positive 
function of Ir[, for instance a Gaussian, then we can replace [r.I in (21) by 
its lower bound and rewrite (21) as 

~-~  ~ S(k + b)f(lkl) ,< ~ F(,~alj]) -< f dx F(~,alxl) -~ f ( k  = 0)/(aa) a 

(22) 

which is finite for a # 0 and hence (15) can always be realized in a solid 
phase whatever the potential which gave rise to it. 

Consider now Eq. (16). From Eq. (10) we obtain 

v(k)  = f lnk2v(k)  =- w2(k)/vo 2 (23) 
T L  

where ~o(k) is the "plasma frequency" of a system of particles of  thermal 
velocity Vo = (/3M) -~I2, M being their mass. Notice that for short-range 
potentials v(k  = 0) will be finite and hence co(k) will be soundlike and there 
is no reason in this case to separate it from I(k). For I(k) we obtain from (11) 

flnf dr h(r)(1 - exp ik.r) V2V(r) (24) I(k) 

where nh(r) is the Fourier transform of h(k). Equation (24) differs from the 
corresponding quantity considered by Mermin (5) because of  the appearance 
of h(r) in it instead of the total correlation function g(r) = 1 + h(r). This 
difference is due to the presence of the background and becomes immaterial 
for short-range forces. Returning to (16), we see that if we take forf( Ikl)  a 
rapidly decreasing function of k, we only have to inquire for the behavior 
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of the integrand of (16) for small k. As h(k) = h ( - k ) ,  we have from Eq. (24) 
that I(k) = k2C + O(k4), with C given by 

C = �89 dr h(r)(K.r) 2 V2V(r) (25) 

= (m/2d)(rn + 2 - d ) f l ( ( U -  Uo)/N>rr. (26) 

where in Eq. (26) we have used the fact that V(r) is an inverse-power poten- 
tial (~  r-  m), whereas C cannot depend on the direction ~ of k if the orienta- 
tion of the crystal in space has not been fixed. Hence I(k) will be of order k 2 
for small k provided the average energy per particle ((U - Uo)/N) remains 
bounded in the TL. The latter property can be established rigorously both 
for the short-range potentials (5,6~ and for the genuine Coulomb systems: (13,1 ~) 
For the long-range inverse-power potentials considered here we retain from 
the latter proofs (1~ that ((U - Uo)/N) can be bounded by the self-energy 
of finite cells. These self-energies will be finite whenever the potential is 
integrable at the origin, i.e., in the present case for m < d. 

For all values of m (except eventually the boundary value m = d) we 
therefore expect I(k) to behave for small k as k2C with C finite. Hence the 
whole difference between the short-range and long-range potentials con- 
sidered here (~  r -  m) stems from the presence of the plasma frequency oJ(k) 
of Eq. (23) in the basic inequality (7). For long-range potentials oJ(k) will 
cease to be soundlike and will weaken Bogoliubov's 1/k 2 singularity, as will 
now be seen. 

5. RESULTS 

Let us gradually decrease the value of m and inquire for the implications 
of Eqs. (13) and (14). 

m > d. This corresponds to the short-ranged potentials already con- 
sidered by Mermin. (5~ Here v(k = 0) = 0 is automatically satisfied and no 
stabilizing background is needed. Moreover, v(k) vanishes faster for small k 
than the k 2 terms, i.e., k 2 + v(k) + I(k) ~ k2(1 + C), and we recover 
Bogoliubov's 1/k 2 singularity, so that (16) is satisfied for d ~< 2, which is 
Mermin's result35~ 

As an interesting by-product, we observe that (13) implies that 

lira S(k)  -= (n/{3)X r >t (1 + C) -2 (27) 
k--*0 

yielding a lower bound for the isothermal compressibility Xr in terms of C 
or via Eq. (26) in terms of the internal energy. 
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d i> m > d - 2. This domain  corresponds to long-range potentials  
decaying faster  at large r than the genuine Cou lomb  potentials.  This region 
includes the realistic case d = 2, m = 1 describing the electron sheets con- 
sidered recently by various authors.  C6-8~ Here  v(k) exhibits a logari thmic 
(m = d) or algebraic (m < d) singularity for  small k [see (17)]. In  this case 
the background  is essential in order  to keep the system stable. The major  
point  here is that  v(k) vanishes more  slowly for  small k than  the k z terms 
[v(k) ,,~ k 2+m-a for  m < d] and Bogol iubov 's  1/k 2 singularity becomes a 
weaker  1/k 2 + m-d singularity. Equat ion  (16) is now satisfied for  d ~< (m + 2)/2, 
i.e., d ~< 2 - (d - m), as compared  to d ~< 2 for  the short-range forces, 
showing that  (quite naturally)  long-range forces (d - m > 0) make  it more  
difficult to exclude long-range order. Not ice  also that  here the p lasma mode  
remains a low-frequency mode  since ~o(k) still vanishes with k. I t  is note- 
wor thy  that  the peculiar dispersion relation co(k) ~ k 1/2 pertaining to the 
a forement ioned  electron sheet (d = 2, m = l) has been checked experi- 
mentally.  (6~ Returning to (13), we also obtain  for  small k tha t  S(k )  >1 
[[3nv(k)]-1 and observe that  the equali ty corresponds precisely to the small-k 
behavior  conjectured elsewhere (1~ for  S(k) on quite different grounds.  

m = d - 2. Fo r  this part icular  value o f  m, V(r)  is the fundamenta l  
solution of  the d-dimensional  Poisson equat ion:  

v~V(lrl) -- - Z ( d ,  d - 2)e 2 ~(r) (28) 

i.e., V(r)  = e2r2-a/(d - 2) for  d # 2 [and V(r) = e 2 In r -1 for  d = 2 by 
analytic cont inuat ion o f  the Four ier  t ransform(l~] .  Fo r  this genuine Cou lomb  
case, co(k) turns out  to be a constant  independent  o f  k, whereas I (k)  vanishes 
identically [see Eqs. (24) and (28)]. Consequently,  the Bogol iubov singularity 
is completely  suppressed here and  long-range order  cannot  be excluded 3 
on the basis o f  (7) for  any d > 0. The  results obta ined elsewhere by Mer-  
mill (16~ for  the m = 1, d = 3 Cou lomb  potent ial  can now be easily general- 
ized to variable d. F r o m  (13) we see tha t  S(k)  is still bounded  f rom below 
(for all k) by its " D e b y e - H t i c k e l "  approx imat ion :  

S(k)  /> k2/(k 2 + kD 2) (29) 

where the d-dimensional  generalization o f  the Debye wave number  kD and 
the corresponding p lasma frequency oJv = Vok, can be obta ined f rom the 
definition kn 2 =  fle2nZ(d, d -  2) together  with Eq. (18). Using (29) in 

3 A more detailed analysis than the one provided by the Mermin inequality has been 
performed by Kunz ~17~ for the genuine Coulomb case in d = I. His results indicate 
that even in the thermodynamic limit the system's state will depend on the applied 
boundary conditions. For fixed wall boundary conditions the system will be in a 
crystalline state, whereas it will be in a translationally invariant state for periodic 
boundary conditions. 
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Eq. (12) we also obtain the following generalization o f  Mermin 's  lower 
bound  for  the internal energy: 

2 < d < 4 (30) 

and similar results for  some other  thermodynamic  functions. 

d - 2 > ra. In  this somewhat  exotic super-Coulomb case ~o(k) will 
diverge for  small k, reinforcing the above results for the Coulomb system, 
which clearly appear  as a boundary  case. 

6. C O N C L U S I O N S  

I t  has been shown that  Bogol iubov 's  1/k 2 singularity leading to the 
absence o f  long-range positional order  in the infinite crystal for  d ~< 2 is 
affected by the range o f  the potential. For  long-range inverse-power repulsive 
potentials o f  the fo rm V(r)  = e2r-m/m the system, suitably stabilized by an 
appropriately " c h a r g e d "  background,  can exhibit no infinite crystalline 
order  for  d ~< (m + 2)/2 when m ~< d. Consequently,  for  genuine Cou lomb  
systems (m = d - 2) and the electron surface layers (m = 1, d = 2) long- 
range order  cannot  be excluded by this argument.  

R E F E R E N C E S  

1. R. E. Peierls, Helv. Phys. Acta 7 (suppl. 2):81 (1936); see also Quantum Theory of  
Solids (Oxford University Press, 1955), w 3.3. 

2. L. D. Landau, Collected Papers, Ter Haar, ed. (Gordon and Breach, N.Y., 1965), 
p. 210. 

3. J. Frenkel, Kinetic Theory of  Liquids (Dover, N.Y., 1955), pp. 120-125. 
4. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, N.Y., 1968), 

w 
5. N. D. Mermin, Phys. Rev. 176:250 (1968). 
6. M. Baus and J. P. Hansen, Phys. Rep. (to be published). 
7. C. C. Grimes and G. Adams, Phys. Rev. Lett. 42:795 (1979). 
8. R. C. Gann, S. Chakravarty, and G. V. Chester, Phys. Rev. A (to be published). 
9. N. D. Mermin, J. Math. Phys. 8:1061 (1967). 

10. E. M. Sorokina, Soy. Phys.--Doklady 15:23 (1970). 
11. S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45:2102 (1966). 
12. I. M. Gelfand and G. E. Shilov, Generalized Functions (Academic Press, N.Y., 

1964), Vol. 1, p. 192. 
13. E. H. Lieb and H. Narnhofer, J. Stat. Phys. 12:291 (1975). 
14. R. R. Sari and D. Merlini, J. Stat. Phys. 14:91 (1976). 
15. M. Baus, J. Stat. Phys. 19:163 (1978). 
16. N. D. Mermin, Phys. Rev. 171:272 (1968). 
17. H. Kunz, Ann. Phys. 85:303 (1974). 


